Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice
نویسندگان
چکیده
Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses.
منابع مشابه
West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells
West Nile virus (WNV) belongs to a group of medically important single-stranded, positive-sense RNA viruses causing deadly disease outbreaks around the world. The 3' untranslated region (3'-UTR) of the flavivirus genome, in particular the terminal 3' stem-loop (3'SL) fulfils multiple functions in virus replication and virus-host interactions. Using the Kunjin strain of WNV (WNV(KUN)), we detect...
متن کاملThe Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology...
متن کاملKeratinocytes are cell targets of West Nile virus in vivo.
West Nile virus (WNV) replicates in the skin; however, cell targets in the skin have not been identified. In the current studies, WNV infected the epidermis and adnexal glands of mouse skin, and the epidermal cells were identified as keratinocytes by double labeling for WNV antigen and keratin 10. Inoculation of mice with WNV replicon particles resulted in high levels of replication in the skin...
متن کاملAedes aegypti Saliva Alters Leukocyte Recruitment and Cytokine Signaling by Antigen-Presenting Cells during West Nile Virus Infection
West Nile virus (WNV) is transmitted during mosquito bloodfeeding. Consequently, the first vertebrate cells to contact WNV are cells in the skin, followed by those in the draining lymph node. Macrophages and dendritic cells are critical early responders in host defense against WNV infection, not just because of their role in orchestrating the immune response, but also because of their importanc...
متن کاملPrior Exposure to Uninfected Mosquitoes Enhances Mortality in Naturally-Transmitted West Nile Virus Infection
BACKGROUND The global emergence of West Nile virus (WNV) has highlighted the importance of mosquito-borne viruses. These are inoculated in vector saliva into the vertebrate skin and circulatory system. Arthropod-borne (arbo)viruses such as WNV are transmitted to vertebrates as an infectious mosquito probes the skin for blood, depositing the virus and saliva into the skin and circulation. Growin...
متن کامل